System Experiments Laboratory  

Go Back   System Experiments Laboratory > Research Operations Center > Operations

Reply
 
Thread Tools Display Modes
  #1  
Old 09-01-2019
selroc selroc is offline
Administrator
 
Join Date: Aug 2019
Location: ROME
Posts: 92
Default Modus Operandi: Autopoiesis

Meaning
Autopoiesis was originally presented as a system description that was said to define and explain the nature of living systems. A canonical example of an autopoietic system is the biological cell. The eukaryotic cell, for example, is made of various biochemical components such as nucleic acids and proteins, and is organized into bounded structures such as the cell nucleus, various organelles, a cell membrane and cytoskeleton. These structures, based on an external flow of molecules and energy, produce the components which, in turn, continue to maintain the organized bounded structure that gives rise to these components (not unlike a wave propagating through a medium).

An autopoietic system is to be contrasted with an allopoietic system, such as a car factory, which uses raw materials (components) to generate a car (an organized structure) which is something other than itself (the factory). However, if the system is extended from the factory to include components in the factory's "environment", such as supply chains, plant / equipment, workers, dealerships, customers, contracts, competitors, cars, spare parts, and so on, then as a total viable system it could be considered to be autopoietic.

Though others have often used the term as a synonym for self-organization, Maturana himself stated he would "[n]ever use the notion of self-organization ... Operationally it is impossible. That is, if the organization of a thing changes, the thing changes". Moreover, an autopoietic system is autonomous and operationally closed, in the sense that there are sufficient processes within it to maintain the whole. Autopoietic systems are "structurally coupled" with their medium, embedded in a dynamic of changes that can be recalled as sensory-motor coupling. This continuous dynamic is considered as a rudimentary form of knowledge or cognition and can be observed throughout life-forms.

An application of the concept of autopoiesis to sociology can be found in Niklas Luhmann's Systems Theory, which was subsequently adapted by Bob Jessop in his studies of the capitalist state system. Marjatta Maula adapted the concept of autopoiesis in a business context. The theory of autopoiesis has also been applied in the context of legal systems by not only Niklas Luhmann, but also Gunther Teubner.

In the context of textual studies, Jerome McGann argues that texts are "autopoietic mechanisms operating as self-generating feedback systems that cannot be separated from those who manipulate and use them".
Citing Maturana and Varela, he defines an autopoietic system as "a closed topological space that 'continuously generates and specifies its own organization through its operation as a system of production of its own components, and does this in an endless turnover of components'", concluding that "Autopoietic systems are thus distinguished from allopoietic systems, which are Cartesian and which 'have as the product of their functioning something different from themselves'". Coding and markup appear allopoietic", McGann argues, but are generative parts of the system they serve to maintain, and thus language and print or electronic technology are autopoietic systems.

In his discussion of Hegel, the philosopher Slavoj Žižek argues, "Hegel is – to use today's terms – the ultimate thinker of autopoiesis, of the process of the emergence of necessary features out of chaotic contingency, the thinker of contingency's gradual self-organisation, of the gradual rise of order out of chaos."

Relation to complexity
Autopoiesis can be defined as the ratio between the complexity of a system and the complexity of its environment.

This generalized view of autopoiesis considers systems as self-producing not in terms of their physical components, but in terms of its organization, which can be measured in terms of information and complexity. In other words, we can describe autopoietic systems as those producing more of their own complexity than the one produced by their environment.
Reply With Quote
Reply


Currently Active Users Viewing This Thread: 1 (0 members and 1 guests)
 
Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off



All times are GMT +2. The time now is 09:16 PM.


Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2019, vBulletin Solutions Inc.
(c) 2019 System Experiments Laboratory